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The formalism developed in the previous paper [Kato, Acta Cryst. (1976), A32, 453-457] is applied to 
real crystals. If the correlation length of the lattice phase factor is sufficiently smaller than the extinction 
distance, the ensemble averages of the intensity fields, (Io) and (Io), satisfy a set of energy-transfer 
equations. Their form is essentially the same as that used in the conventional theory of secondary 
extinction. However, the physical meanings of the coupling constants connecting (Io) and (I9) are 
different, so that a modification to the theory of secondary extinction is suggested. The conventional 
model of mosaic blocks is merely a special case and the theoretical framework is free from the model 
of distorted crystals. 

1. Introduction 

The formalism presented in the previous paper is ap- 
plied to real crystals. Mainly for the sake of concrete- 
ness, the Laue case is dealt with under the boundary 
conditions specified by equations (1.12).* The aim is to 
give a wave-optical justification of the energy-transfer 
equations of the type (1.4) on which the conventional 
theory of secondary extinction is based. 

In conclusion, one can obtain fundamental equa- 
tions similar to equations (I.4), under the condition 
v<~A where T is the correlation length of the lattice 
phase factors and A is the extinction distance. How- 
ever, the physical meanings of the coupling constants 
in the fundamental equations are different from those 
of equations (1.4). Thus, a modification to the theory 
of secondary extinction is suggested. 

2. The correlation of the lattice phase factors 

We shall assume an isotropic and homogeneous cor- 
relation regarding the phase factors exp + iG(m, n). The 
assumption is expressed explicitly by 

(exp iGfm+z,n), exp -iG(m,n))=f(z) (la) 

(exp iG(m,n+z), exp -fG(m,n))=f(z),  (lb) 

where f(z) is a symmetric function for + z, the maxi- 
mum value being unity at z=O. The correlation func- 
tion ( ) may be complex in general but the conditions 
of isotropy and homogeneity eliminate the possibility 
of being complex. A few physically interesting examples 
off(z)  will be given in Appendix A. 

In the rigorous treatment of the averages (exp i(PR 
--PR')) and (exp i(QR--QR')) appearing in equations 
(I. 16) one needs higher-order correlations, for example 

(exp iG(m+z,n) . exp -iG(m,n) 
x exp iG(m' + z', n'). exp - iG(m', n')). 

If the positions (m,n) and (m', n') are sufficiently far 
apart, this expression can be reduced to the product 
of two second-order correlation functions (1), since 
then the phases at (m,n) and (m',n') are statistically 
independent. 

The correlation length of the nth order is defined by 

i z , = a  ~ {f(z)}"= {f(s)}"ds, (2) 
z = 0  0 

wheref(s)  is the smoothed function off(z) .  Sincef(z) 
is less than unity, 

z l>_z2>. . .  (3) 

is always satisfied. When only the order of magnitude 
is referred to, the suffix n will be omitted. 

Additionally, a few terminologies used in the fol- 
lowing are explained. 

(1) Separation number A of the kinks: We shall take 
a number A which is small enough but larger than (z/a) 
so that f (d )  is practically zero. 

(2) Isolate kinks (IK): If a kink is separated by a 
number larger than A from the neighbours along a 
single zigzag route illustrated in Fig. 1-2, such a kink 
is called IK. 

(3) Kink pairs (KP): If a pair of the neighbouring 
kinks, of types (a) and (b), are closer than A, it is 
called KP. 

In  the following, we shall describe the details only 
for (Io). The calculation of (Io) can be performed along 
the same line of consideration so that only the results 
will be presented. 

3. IK approximation 

In this section, as a preparation for the next section, 
we shall consider a pair of route Ro and RE, each of 
which is composed of only IK as illustrated in Fig. 
l(a).* Their kink points are specified by sets of num- 

* The equations and the figures of the previous paper are 
referred to by Roman number I. 

* The segments of Ro and R~ are drawn as either vertical 
or horizontal lines since only the topological features are of 
significance. 
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bers, (n,,m~) and (n~,m~) respectively as in equation 
(I-15a). They are assumed to differ by the numbers 
(~,  p~) which are less than (A). Otherwise, there is no 
possibility that the route pair will contribute to the 
final expression for (Io). 

As the boundary conditions, 970=0 and 97,=0. Thus, 
one can write down the phase factors for the pair of 
routes Ro and Ro in the form 

exp i(PRo-P'Ro)=exp i[G(n~ + )71, 0 ) -  G(nl, 0)] 
, . .  

x exp i[-G(n~+ 2t,m~+97t)+G(n~,mt)] 
x exp i[G(ni+l+2t+l, rn~ +97i) 
-G(n~+l, mi)] 

xexp i[-G(n,+2,m~)+G(nr,  m~)]. (4) 

Here it is assumed that 

(exp i G ( n + x , m + y ) - G ( n , m ) ) = f ( x ) f ( y ) .  (5) 

Thus, one obtains 

(exp i(P., ,-P~o)) 
= {f(21)f(,91)...f(Ycr-,)f(Y,-1)f(~,)} z. (6) 

The amplitude of the routes Ro and Ro are given by 
equation (I-14a). It is to be noted that the numbers 
of the kinks, r and r ' ,  must be identical. The averaged 
intensity, therefore, is given by 

oo 

(Io)=lAI 2 ~ ~rlx, x-.12"a 4~-2 
r = l  

r - - 1  
x {I S~,{f(Yc,)} z . II S~,{f(97,)} z, (7) 

1=1 1=1 
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Fig. 1. (a) The optical routes for IK approximation. (b) The 
optical routes for IK plus KP approximation. 

where c~, is given by (I-20a) with sufficient accuracy 
and the sum S is taken over ( - A ,  A). From the defini- 
tion of the correlation length r2 [see equation (2)] we 
obtain 

oo I 
2r 2r--1 r r - -1  (I°)=lAIZr=l ~ rI(r-1)'. Ixox-ol (2z2) SoS o 

(8a) 

(8b) 

where /1 is the modified Bessel function of the first 
order. 

For the higher-order terms in equation (8a), the as- 
sumption of IK fails since the average distance l be- 
tween IK is estimated to be so/r or sg/r for a single 
route Ro containing r isolate kinks. Nevertheless, the 
sum of terms of higher order than r >), i can be neglected 
provided that 

{2vdxox_ol } V~oso ~ ~ . (9a) 

The requirements for the IK approximation, l>  
A.  a > zz must be 

< (So/Zz) and (so/7:2). (9b) 

Combining the conditions (9a) and (9b), the necessary 
and sufficient condition is given by 

2v~lxox-ol ~ ~ and V-so/s o . (9c) 

This condition fails in the region where either So or sg 
is nearly zero. There the routes with KP are of signif- 
icance. Therefore, the discussion of equation (9c) will 
be postponed to the end of the next section. 

By using similar procedures one can calculate (Ig). 
The results are given by 

oo 1 2r  2r  r r 
(Ig)=lAIZl%l z ~ ~ l x o ~ c _ g l  (2~'2) SoSo (10a) 

r = 0  

=lAlZlKgl2Io(az2lxgx_ol~osy) (10b) 

where lo is the modified Bessel function of the zeroth 
order. 

4. The improvement by taking into account KP 

So far, only the routes Ro(R'o) with isolate kinks have 
been considered. As shown in Fig. 1 (b), however, there 
are many routes R(R') having kink pairs in the vicinity 
of the route Ro(Ro). They are called associated routes 
of the route Ro(R'o). 

Here, the assumption is made that KP on a route 
R(R') are mutually independent. By the definition of 
IK, a KP is independent also of IK. The assumption 
is justified if KP are sufficiently rare. Thus, before tak- 
ing the ensemble average ( )k over IK, it is allowable 
to take the ensemble averages (expiPR)e and 
(exp iPR,)p over KP. By definition, ((exp iPR)a,(exp 
-iPR')p)k means the ensemble average ( ) over all the 
kinks. 
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We shall consider the ith vertical segment of Ro and 
a segment of R which can be produced by adding p 
kink pairs to it. In Fig. 1 (b), if the coordinate numbers 
o r B  are (n,m), those of C are (n+X,m+y).  The rele- 
vant part of the phase factor, therefore, is given by 

exp iPR = .  • • exp iG(n, m) 
x exp i[G(nl, mx +yl)-G(nl,ml)] 

. . .  (11) 
x exp i[G(np, mp +yp)-G(np, mp)] 
× exp - iG(n + X, m + y),  

where the first and the last factors are responsible for 
IK of type (b) at the top and of type (a) at the tail of 
the segment, B and C respectively, and the other fac- 
tors are due to KP between them. The indexes are 
j index, which specifies the order of KP. Here, the in- 
dex i specifying the order of the segments is suppressed 
in the position numbers (n,m) and (n+X,m+y).  

The ensemble average over KP, therefore, is given by 

P 

<exp iPR>e=. . .exp iG(n,m) H f(yj)  
J = l  

x exp - iG(n + J(, m + y) . . . .  (12a) 

Similarly, the ensemble average of the phase factor for 
R' is given by 

~t  

<exp --iPR,>e=... exp - iG(n' ,m')H f (y j )  
J = l  

x exp iG(n' + X',m' + y') . . . .  (12b) 

Among the coordinate numbers appearing in equa- 
tions (12), the following relations are satisfied. 

( n ' - x ' ) = ( n - x _ ) + 2 _  (13a) 

m' =m+97 (13b) 

n'+X'  = n + X + 2 + .  (13c) 

Here, the suffix ( - )  refers to the preceding horizontal 
segment and ( + )  to the following one and (2,j7) are 
the vertical and horizontal differences in the coordinate 
numbers of the parallel segments of Ro and Ro. In 
addition, (x,y) are related to {xj} and {y j} as 

q P 

x =  ~ x , ,  y = ~ y ,  
d = l  j = l  

(14a, b) 

~t p t  

x ' =  E x J ,  y ' =  EYJ (14c, d) 
d = l  d = l  

where xj(xj) is the vertical difference of the j t h  kink 
pair in a horizontal segment, and q(q') is the number 
of KP in it. 

At the next stage, we shall take < >k after multiplying 
equations (12a, b). From the approximation (5) and 

the relations (13), the phase correlations relevant to IK 
are given by 

<exp iG(n, m) . exp - iG(n', m')> 
=f(~_ +x ' -x_ ) f ( y ; )  (15a) 

<exp iG(n' + X', m' + y') . exp - iG(n + X, m +y)> 

=f(2+)f(p+ y ' - y )  . (15b) 

For the horizontal segments, the factors due to IK 
do not appear because they are already included in the 
expressions (12) for a vertical segment. Therefore, the 
horizontal segments introduce only the factors 

q q '  

1-I f(xj) I-I f fx j ) .  
j = l  J = l  

Thus, one can write the ensemble average of the 
phase factor in the form 

@xp i(Pa-PlV)>=. . . 
p p t  

xfO~ ) H f (yj)  11 f(yj)f(y, + Z YJ-  E Y~) 
J = l  d = l  

q q '  

x f ( , )  n f ( x 3  r i  + E xS- x,) 
J = l  . /=1 

x . . . ,  (16) 

where the relations (14) have been employed for x,y 
etc., and the suffix ( + )  in 2, x and x' can be dropped 
since now they refer to the same horizontal segment. 
The relation (16) is an extension of the relation (6) 
where {xj}, {yj} etc. are neglected. 

For the first and the last (vertical) segments, a special 
care must be paid. In the former, f 0  ~) is unity be- 
cause 37=0 always. Similarly, in the last ( r+  1)th seg- 
ment, f ( P + ~ Y J - ~ Y i )  is unity because then the argu- 
ment must be zero. 

The amplitudes of R and R' are given by 

Aa= ( A-) (-xgK_g)r+ZPi+Zqi(a) 2(r+Zpi+ZqD (17a) 

AR, = (-~) (--l¢gl¢_o)r+Z't+Z,q'i(a) 2(r+y~p'i+Eq'i) (17b) 

where r is the number of IK of one type. Again, the 
number must be identical for the routes R and R'. 
Here, for clarity, the index i of the segment is ex- 
plicitly retained. 

Now, we shall sum over R', fixing the route R. This 
implies summing over p~ and q~ after taking the sum 
over the variables (x~j,y~j) and (x~,Pi). Next we shall 
sum over the associate route R, fixing the route Ro. 
This implies summation over p~ and q, after taking the 
sum over (x~j,ylj). All of these summations can be 
done independently of the different segments of the 
route Ro and Ro. Finally, one has to sum over the pos- 
sible route Ro. 

Thus, one can obtain the averaged intensity in the 
form 
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Ixox-ol a 4 x ( Io )=lAI  ~ ~, ~" "-" (First Vert. Seg.) 
Ro 

× iith Vert. Seg.) 
× (ith Horiz. Seg.) 

× i ( r+  1)th Vert. Seg.], (18) 
where 
(ith Vert. Seg.) 

]p=0 p ' = 0  

× (-t%x-g)P(-'~g'~-oJ" *" * ap'a2U'+P')F(p,P ') (19a) 

(ith Horiz. Seg.) 

= E  E ~q. r~q', , '  
t /=O q'  = 0  

X (--lCoX_o)q(--'r~gn._o * ~'a2(q+~')Ft',~.,,~o') (19b) 

where ap, x(~, r) is the number of the possible routes 
withp (q) kink pairs associated with a vertical (horizon- 
tal) segment of length lo = Xa(lo = Ya). They are given 
by 

1 
1 (to/a)% ~ .  (Io/a)". (20a, b) 

The function F(p,p')  is defined by 

F(p,p ')  

=S} ~ y , . . .  EYe""" {f(Yl). . . f(Y3 . f ( Y ' l ) . . . f ( Y ; ' ) }  

×f(P)f(Y + Z YS- Z Y,) (21a) 

F(q,q ' )  

= S i  Zx~.  . . Zx'~. . . { f (x~) .  . .f(x~) . f(x'x). . . f (x; ,)} 

×f(x)f(x + Z x j -  Z x~). (21b) 

In these formulae the summation ~ covers from zero 
to A and the summation S covers from - A  to +A 
except when it applies to the first and the last segments. 
As will be seen below, these cases are treated with a 
special care. 

The summations appearing in equations (21) are a 
kind of conditional summation. Here, we shall use the 
approximation 

q q '  

f ( 2  + Z x j -  ~, x j ) = f ( 2 )  II f ( x j )  I-I f(xj) (22a) 
j = l  1=1  

p p '  

/(y + E E y,)=/(y) (22b) 
d = l  J : l  

The justification will be discussed in Appendix B. 
Under this approximation, one can regard p, {y j}, 
and {x:} as independent variables. Then one obtains 

p+p +1 p+p F(.p,p')~_(1/a) ' (z~) '(2zz) (23a) 

r(q,q')=(1/a)~+~'+*(v2)~+~'(2v2) . (23b) 

For the first vertical segment, the summation S~ can 
be omitted since jr=0. Similarly, in the last vertical 
segment, f(fi) can be replaced byf(~yj-Y~ya) because 

37+ ~ y j - ~ y j  is zero. Again the summation S~ can be 
omitted. Thus, 

Fl(p,p')~(1/a)P+P'(zz) p+p' (23c) 

Fr+l(.p,p')~(1/a)P+P'(zz)P+P'. (23d) 

Substituting from the relations (20) and (23) into 
(19), we shall have 

(First Vert. Seg.) 

=exp -Zz[O%x_o)lo. 1 +0cgtc*_o)/o,l] (24a) 

(ith Vert. Seg.) 
=exp -Tz[(tcotc_o)lo.,+Qcgx*_31"o.,] (2~2/a) (24b) 

(ith Horiz. Seg.) 
=exp -z2[(x.otc_o)lo.,+(x~x*o)l'o,,] (2z2/a) (24c) 

[(r+ 1)th Vert. Seg.] 
m * * / '  . - e x p  --v2[(KoK_o)lo.,+l+Qcox_o) o.,+1] (24d) 

Since 
,+1 ,+1 ~ 

lo,,= ~ lo.,=So and In,,= / ; . ,= s  o, 
l = 1  1=1 1=1 t=1  

one obtains from equation (18) that 

<Io>=IAl z exp -2~z Re Qcot¢_o) (So+So) 
× ~ 2r 4r I~%~c-ol a -2(2~2/a)2"-1. (25) 

Ro 

As in the case of equation (8), r, Ro can be replaced by 
c o  

~ so that we shall have finally 
r = l  

( Io )=lAI  z exp -2~2 Re (×ore_o) (So+So) 

x [xoK_ol~so-[S-oIl(4r2lKox_ol~S-oSo). (26a) 

By similar procedures one can obtain the average 
intensity for the Bragg-reflected wave as 

( Io )=  [AI z exp -2v2 Re (xox_o) (So+So) 

× IKol~Io(avzlxo~_oll/Uoso). (26b) 

In deriving these results, the essential approxima- 
tion is to represent the correlation of the lattice phases 
by the product of the second-order correlation func- 
tion defined by equations (1). This approximation can 
be justified when the IK and KP are separated by a 
distance more than A. a, namely when the number of 
KP along all vertical segments, p, and the number of 
IK of (a) type, ~, satisfy the condition 

p + ~ < So/d.  a < So/Z2. (27a) 

Similarly, for the number of KP along all horizontal 
segments, •, the condition 

q + e < so/A . a < so/z2 (27b) 

must be satisfied. Accordingly, if a set of numbers, p, 
and ~, exist and the higher-order terms than p, ~ and 
in the power series expansions of e x p - 2 z z x  

Re (t%tc_o)So, exp -2 rz  Re (xMc_o)s o, and/1 (or Io) are 



462 ON E X T I N C T I O N .  II  

negligibly small respectively, the approximation men- 
tioned above would not harm the final results, equa- 
tions (26). These conditions are obviously 

2v2lxox_ols o <p  (28a) 

2vzlKox-olso < c/ (28b) 

2vzlx~:_oll/~oS,, < e, (28c) 

where Re (xox_g) and Ixox-ol are not distinguished. 
The necessary and sufficient condition for such p, q 
and ~ to be found is 

2vzlxox_ol(~o + ]/S-~) 2 < (P + q + 20 

namely 

~l~o~-ol ~ ~(so +so) < ½. (29a) 
So + so + 2l/soso 

This implies that 

zz ~ ½1xox_ol-~/2~ A , (29b) 

where A is the Pendell6sung fringe spacing or primary 
extinction distance in order of magnitude. 

5. Discussion and conclusions: mainly on secondary 
extinction 

The formulae (26a, b) arc a good approximation of 
(lo) and (I9) under the condition (29b) and the pre- 
scribed boundary conditions (1.12). It is a straightfor- 
ward matter to show that they satisfy the differential 
equations 

_ _  2 O(Io) - 2 r 2  Re (xox_o)(Io)+2"c2lx_ol (Io) (30a) 
Oso 

~3(I°> - - 2zz Re (xgx_9)(Ig) + 2r21xg12(Io). (30b) 
0sg 

These are nothing but a set of energy-transfer equa- 
tions. Neglecting the difference between Re (xgx_9), 
IK~I 2 and Ix-o? the equations are identical in form to 
equations (I.4) on which the conventional theory of 
secondary extinction is based. The difference is of sig- 
nificance when the dispersion effect on the structure 
factor F 9 is appreciable. From the physical meaning 
of the coupling constants, the present form is more 
reasonable than the conventional one. 

Here a few significant remarks will be additionally 
mentioned. 

(1) Equations (30) refer to the intensities taken over 
an ensemble of real crystals, rather than the intensities 
in the individual experiments. 

(2) Equations (30) are derived from the spherical- 
wave theory. This implies that the intensity fields con- 
cerned are an angularly integrated intensity. For this 
reason, the coupling constants are irrelevant to the 
direction of the incident beam. This is the most signif- 
icant difference between equations (30) and (1.4). The 

correlation length z2 depends purely on the characters 
of the medium or the assumed statistical ensemble of 
distorted crystals. 

(3) To obtain the integrated power, one does not 
need the integration over the direction of the incident 
beam. In the experiments using a crystal bathed in the 
incident beam, if the solution is given for the incident 
wave of ~-function type, what one needs is spatial in- 
tegrations on both the incident surface and the exit 
surface of the crystal. The procedures have already 
been discussed in a general way in § 5 of the first paper. 

In the conventional theory of secondary extinction, 
first a kind of angular integration is performed to find 
the coupling constant 6(~) [see equations (I.5)] and next 
another angular integration is required to obtain the 
integrated power. The correctness of these double in- 
tegrations is doubtful. 

(4) The conventional theory of secondary extinction 
is based on the model of mosaic blocks in which the 
diffraction theory for perfect crystals can be used. As 
to the model of the crystals, the present theory is more 
flexible. In Appendix A the correlation length z2 is dis- 
cussed for a few models of the ensemble of distorted 
crystals. In the first model only a distribution of elastic 
strain is assumed. In the second model, a size distribu- 
tion of the mosaic blocks is assumed in the sense of 
the conventional theory of secondary extinction. Al- 
though the characters of z2 (2 or 0~ dependence) depend 
on the specified model, the framework of the present 
theory is not confined to the mosaic block model. 

This paper has dealt with only the fundamental 
problems on the energy-transfer equations. A few re- 
marks on further developments will be given here. 

(1) From the standpoint of the present theory it is 
necessary to consider correctly the higher-order corre- 
lation of the lattice phase, if the correlation length r2 
is larger than the extinction distance. 

(2) To obtain the spatial integrations mentioned in 
(3) above, one needs the intensity fields not only in the 
Laue case but also in the other cases, such as Laue-  
Bragg and Bragg cases. It is desirable to obtain the in- 
tensities in these cases by combinatorial calculation, 
as in the Laue case. In practice, however, once we ad- 
mit the energy-transfer equations (30), it is more con- 
venient to solve them under suitable boundary condi- 
tions. Some of the calculations based on equations 
(I.4) CWerner & Arrott, 1965; Werner, Arrott, King 
& Kendrick, 1966; Becker & Coppens, 1974) are useful 
for this purpose, although the physical meanings are 
different. 

(3) To avoid the mathematical difficulty in solving 
equations (30) for crystal of arbitrary shape it is ad- 
visable to do the experiments for a parallel-slab crystal 
under the conditions of the Laue or the Bragg case. 
Nevertheless, to find the ensemble average of the in- 
tensities, the experiments must be done with a fairly 
wide incident beam. 

The present theory can be regarded as a dynamical 
theory for distorted crystals. In the past decade, several 
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types of theory have been proposed for the under- 
standing of the diffraction phenomena of crystal de- 
fects. Limited to X-ray cases, for example, one can list 
Penning & Polder (1961, 1964), Takagi (1962, 1969), 
Kato (1963a, b, c, 1964a, b, 1973), Bonse (1964), 
Kambe (1965, 1968), Kuriyama (1967, 1968, 1970, 
1971, 1972, 1973), Kuriyama & Early (1974) and Dede- 
richs (1966, 1967). Furthermore, it would be worth 
mentioning the work of Kuriyama & Miyakawa (1969, 
1970) who dealt with the problem of extinction for 
vibrating crystals. Also Katagawa & Kato (1974) & 
Chukovskii (1974) presented the exact analytical solu- 
tion for the crystal having a constant strain gradient 
of arbitrary magnitude. In these theories, except for 
the theory of Dederichs studying the statistical nature 
of point defects and clusters, all authors are interested 
in the cases where the lattice distortion is definitely 
specified. In the result, even in highly distorted crys- 
tals, the wave fields obtained must be regarded as per- 
fectly coherent with the incident waves. 

In the problems of highly distorted crystals, if only 
statistical information about lattice distortions is avail- 
able, one cannot obtain both the wave fields and the 
intensity fields for a specified lattice distortion. What 
one can discuss is the averaged intensity for an en- 
semble of lattice distortions. It must be emphasized 
that incoherence of waves is merely a result, usually 
an approximate one, of the ensemble average. The 
present approach is the first step in developing the 
dynamical diffraction theory to take into account the 
statistical nature of lattice distortions of displacement 
type. 

APPENDIX A 
Correlation function f ( s )  

1. Misorientation model 
The rectangular coordinates (xl, x2) normal and par- 

allel to the net plane within the reflexion plane are 
given by 

(xl, x z )=(-s in  0n, cos OB)So+(Sin 0B, COS On)S o . (A.1) 

Then, one can write the g component of the displace- 
ment vector u in the vicinity of s = 0  in the form 

u(s)=u(O)+cs (A.2) 
where s stands for So or s o and 

e= _+ sin 0 B'Jr" COS On. (A.3) 
O O 

is the deviation angle from the exact Bragg condition 
for a beam which satisfies exactly the condition when 
e=0. In the following, we shall take ~0 as a statistical 
variable and assume that the crystalline state is char- 
acterized by a normalized distribution function ~0(~0). 
The model is called the misorientation model. 

With this model, the correlation function can be cal- 
culated by 

f ( s )=  l ~  q~(q~) exp [2gi(sin 2On/2)q~s]dqg. (A.7) 

It is reasonable to assume that ~b(~0) is a symmetric 
function. Then, f (s)  is also a real symmetric function. 
The Fourier transform off(s)  is given by 

1 (2/sin 20n)~0(~2/2g sin 20n). g(O= (A.8) 

The correlation length defined by equation (2) is given 
by 

• , =  V2g(0)=½(2/sin 20n)~b(0) (A.9a) 
@ 

,o,,> 

f+°°{ )} 
x ~(~0 2d~0. (A.9b) 

- - c o  

2. Block model 
If the displacement vector u is constant within a dis- 

tance l and at random outside it, the correlation func- 
tion must be C(Isl- l) ,  the function C(x) being defined 
by 

C(x)= 1 x < 0  

=0 x>0. (A.10) 
If such regions occur with a probability density L(l), 
one obtains the correlation function 

f ( s )=  I2 t ( l ) f ( I s l - l ) d l .  (A.11) 

The Fourier transform off(s)  is given by 

(A.12) 

The correlation length can be calculated by 

The lattice phase, therefore, is given by 

where 

and 

G=2.(g. n)=Go+~s (A.4) 

~= 2nlgl cos On= 2n(sin 20n/2) (A.5) 

~o = _+ tan On (A.6) 
O O 

i 
o o  

T~= L(l) . ldl (A.13a) 
0 

S S' Ta=2 L(l) l'L(l')dl'dl . (A.13b) 
0 0 

Unlike the misorientation model, T1 and ~z are inde- 
pendent of 2 and the Bragg angle 0n. 
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3. Combination model 
A more realistic model would be a combination of 

models 1 and 2. Then the correlation function can be 
written down as 

i f ( s ) =  ~(cp)dcp L(l)C(lsl-l) exp i~osdl. 
0 

(A.14) 

The Fourier transform off(s)  is 

g(O=V~I~(~o)d~oI°°L(1) sin' ' l  o - ~ v - -  dl, (A.15) 

where 
~ ' = ~ + ~ .  (~.16) 

By the use of this expression, one can see that 

..=i+: l'sin'  ',<,>d/ (..7a> 
0 ~0 

1 
"2 = ~ I ~ :  ~(~0')dcp I ~ :  ~(~°'')d~°'' Io L(l')dl' 

x o L(l")dl" si~,~'l' sin ,, d~. 

The last integral can be calculated easily by contour 
integration so that 

zz =2 I+~ q~(~0')d~o' I ~  ~(~°'')d~°'' Io L(I')dl' 

l r sin ~(~o'- ~o")l" dl" 
× o L(I") ~(~o'-- ~o") " (A.17b) 

Model 1 is the special case where ~ol is effectively in- 
finity so that 

sin ct(~o'- ~o")l" 1 ~o"). 
~zc-- ~(~o'- (A.18a)* 

Model 2 is the case where cqol is effectively small, so 
that 

sin c~(~o'- ~o")l" 1. 
o,(~,'- ¢ 3  ~ r ' -  ~,. [~(~'-  ¢')]~(l") 3+ . . . .  

(A.18b) 

The transition occurs under the condition 

2zc sin 20B=2](i. O) (A.19) 

where i and ~ are the average block size and the aver- 
age misorientation angle. In a sense, models 1 and 2 
correspond to the types I and II in Zachariasen's clas- 
sification of mosaic crystals but the correspondence is 
not exact. 

In general, the 2 and On dependence is rather com- 
plicated. From the above analysis, however, one can 
conclude that: 

* Notice: 

S~ L(l')dl" IZo" L(l")dl"= ½17 L(l')dl" Io L(l")dl" = ½. 

(1) Model 1 is adequate in practice when (l. 0)>~2. 
(2) In principle, if the Bragg angle is small, all crys- 

tals behave as if they are crystals of model 2. 

APPENDIX B 
The function F(p,p') and related topics 

First, we shall consider F(p,p~ defined by equation 
(21a). Replacing the coordinate numbers {p, yj,yj} by 
the continuous variables {g,s:,sj} as in equation (2) 
and introducing a dummy variable s, one can write 
F(p,p') in the form 

F(p,p')= (1)p+p,+x l ~  ds I ~  dg 

x f(sj)dsj 
J = l  0 

× f(~)f(s)~(s-~- ~. ~j + ~, ~3. (B.1) 

By the use of the well-known expression 

~Cs-~- Z sj+ Z s9 

=(2n) -1S~:exp i , ( s - g -  ~ s j +  ~ ss)d, , (B.2) 

equation (B. 1) can be rewritten as 

F(p,p,) = (l/~)p + 1,,(2/a)p+ p,+x 

× S+~ g(Qg*(Q {g+(~}P(g-(~)}P'd~ (B.3) 

where 

1i+  g(~)= - ~  f(s) exp i~sds (B.4a) 

1S+ 
g*(O= - ~  f(g) exp --i~gdg (B 4b) 

S 1 f(sj) exp i~sjdsj (B.4c) g+(0= ~ o 

g - ( O = - ~  fCsj) exp -i~sjdsj. (S.4a) 

Since f (s)  is a symmetric function, one can see that 

g(( )=g*(Q (B.5a) 

is real and has the maximum at ~ = 0 and tends to zero 
as ~ increases. Moreover, 

g(O =g + (~ + g -(0 (B.5b) 
and 

h(~=(j)-'{g+(C)-g-(~} (B.5e) 

is real and h(0) is zero. 
The other useful properties of g(¢) are listed below: 
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g(0)= ~ v~ (B.6a) 

l ~ ~ g (~d~ = ] /~f(0)= 1/2-~ (B.6b) 

I ~  {g(~}Zd~= I ~  {f(s)}Zds=2rz" (B.6c) 

Substituting from the expression (B.3) into equations 
(19), one can write the contribution of the ith vertical 
and horizontal segment as 

Vi = ( 1 ) I ~  {g(~)}z exp -{Fog(~+7oh(~}d~ 

(B.7a) 

Hi = ( 1 ) l ~  {g(~)}z exp-{Fog(~)+Tgh(~)}d~ 

(B.7b) 

where 

1"o = 1/'2-~ Re (xotc_g)lo. l , 
:Co = ~ Im (xgx_o)lo., (B.8a, b) 

F o = ]/'2-~ Re (tcox_o)lo, , , 
~o = l / ~  Im (Kox_o)lo, t , (B.8c, d) 

so that Fo,o>>~o,o are always satisfied. In deriving 
equations (B.7), the minute approximations lo, ,=lo, t 
and lo, i= l'o, ~ are employed. 

Here, we shall consider the function 

Z =  ( I ) S ~ g ( ~ ) e x p - { F g ( ~ + ? h ( O } d ~ .  (B.9) 

Since we are interested in the case of appreciable values 
of V~ and H~, it is safe to assume that Fg(O) is not too 
large. Then, remembering both that h(0) is zero and 
the properties listed in equations (6), one can obtain 
the main contribution to the integral from the region 
in the vicinity of 4~0,  so that one can approximate 
(B.9) as 

From equations (B.7a) and (B.9), one obtains 

~ (2z2/a) exp - 2  Re (xgx_o)zflo, , . (B.12a) 

By a similar calculation, 

Hl~_(2z2/a) exp - 2  Re (Kox_o)rzlo, i . (B.12b) 

The results (B.12) are identical to equations (24b, e) 
obtained in the text. Thus, it turns out that the ap- 
proximations (22) are equivalent to those used in 
(B.10). 

In order to see how acceptable the approximations 
(B. 10) are, we shall examine two special cases in which: 
case I: 

g(~=g(1- l~ l /~o)  I~l_<~o 
=0 I~1>~o (B.13a) 

{normalization: E~o= 1/7-~} 
case II: 

g(~3=g exp -~1~1 (B.13b) 

{normalization" E/e= g ~  } • 

In these cases, one can obtain the exact function Z 
and V or H in the forms (let x=FE;  dropping the 
suffix i) 

Z (x) = a- ~ V'2~F(x) (B.14a) 

V ( x ) = a - l V ~ E  { - d  F(x)},  (B.14b) 

where the function F(x) is given by: 

case I: 

case II" 

2 
F ( x ) = ~ { 1 - ( l + x ) e x p ( - x ) }  (B.15a) 

F(x)= xl {1-  exp (-x)} . (B.15b) 

Z =  ( 1 )  exp - Fg(O) 

x I ~  g ( ~  exp - F [ g ( ~ - g ( O ) ]  d~ 

~- ( 1 )  exp -Fg(0)  

x I ~  g(O { 1 - F [ g ( O - g ( O ) l +  . . . }d~ (B.10a) 

(1) 
~ / ~  

exp - [ / 2 ~ r r x .  {V~-n - 2 F ( ~ 2 -  ~1) + . . .  } 

On the other hand, 

Z,  pp=a-a~/2-~G(x) 

d 
V,m, = a- l ~ E  { -  -d-~ G(x) } , 

where the function G(x) is given by 

case I: 

case II: 

the approximate results are 

(B.14c) 

(B.14a) 

G(x) =exp - I x  (B.15c) 

G(x) = exp - x .  (B.15d) 

In Fig. 2, the functions dF/dx and dG/dx are com- 
pared in the respective cases. From this analysis, the 
approximations are reasonably satisfactory in the wide 

A C 3 2 A  - 8 
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range of FE, irrespective of the functional form. In o.: 
particular, it is easily seen that the present treatment 
is exact when g(~) is a rectangular form. However, it o.~ 
is clear that the approximations are worse in the second 
case than the first case. In the second case, the correla- o5 
tion function f (s ) ,  the Fourier transform of g(O, is 
Lorentzian, so t ha t f ( s )  has a long tail for large values o, 
ofs.  For  such a case, the present approximations would 
not be very satisfactory. 03 
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